Introduction to ASTRONOMY!



What is Astronomy? Astronomy is a natural science that studies celestial objects (such as moons, planets, stars, nebulae, and galaxies), the physics, chemistry, mathematics, and evolution of such objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explosions, gamma ray bursts, and cosmic background radiation.

In astronomy, the main source of information about celestial bodies and other objects is the visible light or more generally electromagnetic radiation. Observational astronomy may be divided according to the observed region of the electromagnetic spectrum. Some parts of the spectrum can be observed from the Earth’s surface, while other parts are only observable from either high altitudes or space.

Optical astronomy, also called visible light astronomy, is the oldest form of astronomy. Optical images were originally drawn by hand. In the late 19th century and most of the 20th century, images were made using photographic equipment. Modern images are made using digital detectors, particularly detectors using charge-coupled devices (CCDs). Although visible light itself extends from approximately 4000 Å to 7000 Å (400 nm to 700 nm), the same equipment used at these wavelengths is also used to observe some near-ultraviolet and near-infrared radiation.

Radio astronomy studies radiation with wavelengths greater than approximately one millimeter. Radio astronomy is different from most other forms of observational astronomy in that the observed radio waves can be treated as waves rather than as discrete photons. Hence, it is relatively easier to measure both the amplitude and phase of radio waves, whereas this is not as easily done at shorter wavelengths. Although some radio waves are produced by astronomical objects in the form of thermal emission, most of the radio emission that is observed from Earth is seen in the form of synchrotron radiation, which is produced when electrons oscillate around magnetic fields. Additionally, a number of spectral lines produced by interstellar gas, notably the hydrogen spectral line at 21 cm, are observable at radio wavelengths. A wide variety of objects are observable at radio wavelengths, including supernovae, interstellar gas, pulsars, and active galactic nuclei.

Infrared astronomy deals with the detection and analysis of infrared radiation (wavelengths longer than red light). Except at wavelengths close to visible light, infrared radiation is heavily absorbed by the atmosphere, and the atmosphere produces significant infrared emission. Consequently, infrared observatories have to be located in high, dry places or in space. The infrared spectrum is useful for studying objects that are too cold to radiate visible light, such as planets and circumstellar disks. Longer infrared wavelengths can also penetrate clouds of dust that block visible light, allowing observation of young stars in molecular clouds and the cores of galaxies. Some molecules radiate strongly in the infrared. This can be used to study chemistry in space; more specifically it can detect water in comets.

Comments

Popular posts from this blog

Interesting Facts About Time, The Fourth Dimension, And Time Travel

Everything We Should Know About VENUS, OUR PLANETARY NEIGHBOR....

ALL About The Smallest Planet Of Our Solar System - MERCURY...